
Procedural Knowledge Libraries for Data
Visualization Engineers

Abstract

This work explores the concept of procedural knowledge libraries tai-
lored for data visualization engineers. It discusses the dynamic nature
of such libraries, the importance of capturing procedural metadata, and
the implications for knowledge preservation and retrieval. The paper also
examines existing tools and methodologies, highlighting their limitations
and proposing a framework for more effective procedural knowledge man-
agement.

Table of Contents
1 Introduction 2

2 Status quo 3

3 Overview 3

4 How to read this work. Listing the organization of the paper. 5

5 Structure and points 5

6 Motivations & Real-World applications 6

7 Data Visualization and Modelling as a test-bed 7

8 Relevant Work 8

9 Relevant 8
9.1 Annotated Bib . 8

10 Why a library of (tacit) knowledge is valuable for the model
developer 10

11 Kinds of Procedural Knowledge to Capture 10

12 Benefits 10

1

13 Analogies and Relevant Concepts 11

14 Case-studies 12

15 Version Control 12

1 Introduction
Initially, this centered around procedural knowledge as a whole entity and now
it’s information about the process of building new knowledge itself. Explicating
these processes makes it possible to audit [human/machine] reasoners. You
can imagine having repos of procedural knowledge for those analyzing (building
models of) the same dataset. This framework would then make it possible to
assess the mechanistic differences between their approaches, clearly defining the
branches of thought that took place.

The important distinction to make here is that libraries are systems; they are
dynamic, as the contents within them are living. To date, traditional “libraries”
have assumed otherwise. Furthermore, the objects inside them are defined as
an artifact of knowledge. That is, artifacts that are the product of thought and
developed with a goal in mind. The function of the system is then to be a home
to these artifacts and preserve them for prosperity’s sake, but more importantly
for retrieval’s sake. As such, while the integrity of the work should be preserved,
there are ways to build the system and store the objects such that this can be
done.

Provenance refers to the lineage of an object. Provenance, synonymous with
metadata, has been developed with the static knowledge artifact in mind, so
extending upon it for the sake of the dynamic artifact is key for a “new age of
libraries.”

Now, we are faced with the question of what it means to develop new knowl-
edge. That is, what is something tractable than we can anchor to, to help build
better libraries: libraries that work for knowledge that evolves over time. I use
the instance of model-building. While there’s no dedicated library to models,
they exist within research papers, repositories, and notebooks. Here, I outline
the ways that we can capture how they are developed (e.g. improved version
control, collaboratively, integrating “layered context architecture”), what they
mean (i.e. to help people find exactly what they need by explicating what models
and their requests mean), what it looks like to retrieve them (the ideal interface
to help people search in accordance with their preferences), etc. And then I
consider how they may fit into a larger system: how they may be cataloged,
organized (e.g., the metadata that can be assigned to them, scalable metadata
attribution, etc.), and stored (e.g. internet search engine that works for “find-
ings.”).

Here, we focus on the model-builder who is building graphical models or visual-

2

izations. Visualization is often the last step in conveying insight and analysis of
data that has been obtained through the research process. Therefore, within this
test-bed, we lay out a framework and suggest the limitations and trade-offs in
real-world application (i.e. Log-based CRDTs being computationally expensive
than traditional CRDTS), concluding with discussion on promising speculative
and existing areas of work to address them.

2 Status quo
• File versioning where you decide what’s a version. For example, nam-

ing versions of a project as “v1, v2, v3.” Most document libraries have
some version of crude file records. arXiv, the preprint repository will keep
versions of a paper as they’re re-uploaded with edits from the authors.
Google Scholar indexes the versions of a paper and will link it to the same
citation.

• Versioning with a Distributed Version Control System (DVCS) such as Git
where you have logs of your past commits (that make your versions) and
cloud DVCS where you’re able to collaborate with others. Here, there’s
not only versions pertinent to the changes that you make, but the changes
that other people make to your instance of the project, forked versions
of your project, and the changes that their collaborators make to those
instances.

• There’s a number of domain-specific projects and tools, such as CodaLab
where machine learning researchers can host and run their experiments
(reproducible) and share their papers in executable form as worksheets.

• For visualization workflows–the primary application of this project–there’s
VisTrails, a provenance tracker for visualizations where data is stored
in XML files. With it, users can query workflows, as the system tracks
decisions and data products to help answer the actions that led to a result.
It’s core focus is reproducibility. It’s mainly developed for Python and
Python-based visualization libraries.

• There’s Chit, an early-stage structured data version control project.

Perplexity trail (could VizTrail work for a UMAP model and viz? What are its
capabilities?) # Libraries and why they’re valuable

3 Overview
• Broadening the scope of the library

– Procedural knowledge libraries are living and they’re archives of “dy-
namic” reasoning.

– There should not be a distinction because even static artifacts take
time to make and evolve over time. Even if we have static artifacts
our archives should be dynamic to account for development.

3

https://researchdata.wisc.edu/news/version-control-for-research-projects/
https://arxiv.org/
https://codalab.org/
https://www.vistrails.org//index.php/Main_Page
https://github.com/davidad/chit
https://www.perplexity.ai/search/overview-of-viztrails-fCsottRfQR6P0aoMyMLVZg

– Preserving the right to “priviledged information.”

– Trails are now included in the corpus of knowledge and librarians
should be able to navigate them and they should be included in the
set of things that we want to query to answer the questions that we
pose. In other words, including the drafted states means you can have
“end-to-end” libraries: libraries of reasoning and libraries of artifacts.

– This won’t come without intervention, but then how do you translate
the “what” and “how” of development into the “why?” Next, why
does it matter if you can do that?

– Barriers to tracking history

∗ Problems with CRDTs

· Eg-walker algorithm as alternative: https://arxiv.org/pdf/2409.14252
(allows for fine-grained editing history, mentioned the
promise in being extended to rich-text, graphics, and other
applications; HN thread suggests that this would need an
additoinal CRDT implemented for rich-test)

· (From thread) might be fruitful to look at what exists for
photoshop and similar software: where layers can cam
be inserted/deleted and as a result the index of following
items update. And then there’s a question of how layer
re-orders would work. (a set of operations, even graph
where each event corresponds to an operation, replay,
apply/retreat/advance methods for eddicient replay)

· If you have an advanced CRDT say XCRDT which represents
the internal structure in your work then there are way ways to
combine the original operations with the CRDT operations.

∗ The non-linearity of history (Log-based CRDTs: https://sites.cs.ucsb.edu/ ck-
rintz/papers/ic2e22.pdf)

∗ Format / interoperabilityof historical data

∗ Key parameters of queries/history/metadata

∗ This is useful because you can distinguish goals and deviate from
these goals (set out by others or your past self) in pointed, clear
ways.

• The implications of broadening the scope:

– It takes more to train to become a librarian. The scope of the librar-
ian also evolves. The librarian is always the human but machines can
be tools to help us become better ones (work faster, distributively,
and more effectively)

4

– Engineering and research questions that stem from this, especially
on the implementation side.

– The different layers of context: action-layer, procedural-layer,
narrative-layer, object/output-layer (reconstructing by laying these
on top of each other and have them span the space of time in the
horizontal direction) –> assuming this takes the form of a database

∗ From CGPT: “You have 4-D GithHub (model = code (action) +
reason/method/strategy (procedural intent, step in readable lan-
guage, what someone else could theoretically carry out) + inter-
pretation (why the action was done, what outcome was inferred
from the reason for the code, reason for the strategy)compared
to 2-D GitHub (action (what was done) + object (the output))”

· 4-D (new): Model = Action + Rationale + Interpretation +
Object

· 2-D (old): Model = Action + Object

· Reconstructing narratives from the procedural infor-
mation: turning procedural information into knowl-
edge

4 How to read this work. Listing the organiza-
tion of the paper.

5 Structure and points
• Redefine what is a library in terms of its function and its form

– This assumes that there’s some core, instrinsic properties that make
it a library and the rest of the variables we can play with according
to what’s nee

• There’s a gap in the way that we currently store knowledge

– What provenance do we already capture?

• How we manage information might matter more than just the sheer
amount of knowledge that we have

• Procedural knowledge is the one we try the least to preserve but it holds
a wealth of insight

• How do you interact with this kind of procedural knowledge as a librarian?

– That is, how do you query and what does retrieval look like? (This
seems unexplored).

Trying to quantify the current (tacit) knowledge loss when you don’t log

5

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7192714

6 Motivations & Real-World applications
• More than just capturing procedural knowledge how do you make it oper-

ational.

• Being able to have “structured procedural metadata’ ’ for search in in-
ternet research libraries. For example, you could have methodology-based
queries. For a tool like Elicit, it would be possible to search for papers that
use specific methods, had margins or metric results within these ranges,
and so on: this would make it easier to conduct meta-analyses.

• Being able to abstract away the implementation completely and pick be-
tween different workflows on the output-layer.

• Procedural knowledge libraries are effectively tutorials–they allow people
to do the things you’ve done beyond authentication.

• We can get better understandings of systems and do summary statistics
and make opinions and judgements about the world.

• Help interpreters understand how the “formalism” and/or “representation”
disagrees with reality. And being able to assert this at a more granular,
generalizable angle. Models are not objectively worse than each other (for
the most part) but they do carry different goals and assumptions and it’s
useful to make that clear.

• Increased use of “unsupervised methods.” This paper mentions “unsuper-
vised explanatory steps; others off-load the analysis to an unsupervised
model (e.g. Unsupervised Dimensionality Component Analysis).

• The Colab Data Science Agent isn’t very good. There isn’t training data
for this kind of work.

• There’s Julius AI, Tableau, Causal (Taimur), etc.

• There’s no data analysis reasoning examples that would help them express
the different choices that they went down.

• What would it look like to have branching paths interface for automated
reasoners and knowledge work by machines. “Choose your own adventure
but for prompting.”

• “Collective intelligence” in the spirit of the “Paradigms of Intelligence”
team at Google. Problems are “solved” by small groups or single re-
searchers but they’re ability to do so is the product of collective human
output. What would it look like to work with people who are not in our
immediate vicinity or take advantage of past knowledge in a way that is
just as beneficial.

– Solving “open problems” can be reframed as a cooperative search
game.

6

https://arxiv.org/pdf/2111.15506
https://www.theatlantic.com/sponsored/google/beyond-the-brain/3944/
https://arxiv.org/pdf/1801.02965
https://arxiv.org/pdf/1801.02965

∗ “Cooperative search games are collective tasks where all agents
share the same goal of reaching a target in the shortest time
while limiting energy expenditure and avoiding collisions.”

· “The substance to which searchers respond acts as a memory
over which agents share information about the environment.
The actions of writing, erasing, and forgetting are
equivalent to production, consumption, and degra-
dation of chemoattractant.

• You can have “super-intelligence” by tapping into “collective intelligence,”
just by virtue of having the power of the sum. It then becomes a question
of having the various human inputs be as synergistic as possible, enabling
coordination, encouraging participation, etc.

7 Data Visualization and Modelling as a test-
bed

Scoping this project was important because there are many workflows to docu-
ment. I wanted to choose to document the work of someone whose procedural
knowledge is quite abstruse, scarce, and unexplicated, yet important and ubiqui-
tous. Most knowledge workers are to some degree faced with the have to make
sense of high-dimensional, complex data. Thus, here, I focus on procedural
knowledge libraries for the data visualizer.

Data visualization is a way of simplifying the data, drawing patterns, and then
visualizing them in a way that can be understood by others. Still, there are
many decisions that a data visualization engineer will make and it is unclear
why they make them.

For a given dataset, a visualization engineer may follow a number of paths, all
of which are reasonable in their own ways. However, a consumer of a visual-
ization often lacks the context to make sense of the decisions that were made
during the development process. This leads to the interpreter taking conclusions
for granted. Arguably, this is the root of lacking media literacy–an important
problem in today’s society.

Here, we will try to explain why procedural knowledge in this case is valuable,
the kinds that are valuable to capture, and how it may be retrieved, organized,
and cataloged. I call this a library of procedural knowledge for the visualization
engineer, and thus use this as an opportunity to derive a functional definition
of the contemporary library.

I try to describe the features of the data visualization engineer’s workflow as a
basis for coming up with a more extensible framework for procedural knowledge
libraries that could work for a number of them. I frame the answer to these
questions in terms of rough workflow sketches. Thus, this work also serves as

7

https://www.theatlantic.com/sponsored/google/beyond-the-brain/3944/

the basis of conversation for what the ideal library for this kind of knowledge
work, recognizing that there are many details that have been omitted out of
brevity and ignorance.

Data analysis is hard to “learn.” There’s a lot of tacit knowledge and “intuitions”
that are built over time which makes transparency difficult. There’s tacit judge-
ments, exploratory detours, and aesthetic and communication trade-offs.

There’s unique features of graphical model-building: we will explore how to
diff non-text artifacts; we will learn the limits of formalizing and abstraction.

Extrapolating to anytime you want to make intermediate states explicit.

For visualization methods, there’s no “absolute consistency” for what is
a saliency map compared to a heatmap or neural activation. Procedural
knowledge can help us intuit what are better explanations for a given model.
Theory-guided data science.

Visualizations of learned representations or models. Visualization are post-hoc
interpretations and we render visualization to qualitatively capture what models
have learned.

8 Relevant Work
https://learn.hex.tech/docs/explore-data/projects/history-and-versions (Hex
Notebooks and their versioning capabilities)

Is it possible to come up with a rigorous standard of correctness?

Overview of (ML) model viz libs - Pysvelte - LLM Comporator: https://arxiv.org/pdf/2402.10524

9 Relevant
Margo Seltzer

New York Times R&D

Case-studies on Datawrapper, Tableau, etc.

9.1 Annotated Bib
• Learning to See by Looking at Noise

• A Framework for Considering Comprehensibility in Modelling

• In this All of Us failed post (From UMAP blog posts). A grife of the au-
thor is that there were no descriptions: in the Rye paper there was little
justification provided for the decisions that were made such as picking 16
principal components or What the difference would be between 20 princi-
pal components and 16. And there is no “general analysis describing the

8

https://dl.acm.org/doi/pdf/10.1145/3236386.3241340
https://mbaradad.github.io/learning_with_noise/
https://graphics.cs.wisc.edu/Papers/2016/Gle16/compjournal.pdf
https://liorpachter.wordpress.com/2024/02/26/all-of-us-failed/

robustness of results [of the] parameter.” The author questions why the
entirety of the “All of Us” consortium chose to use UMAP.

• https://arxiv.org/pdf/1802.03426v3

– The paper mentions that “fuzzy topological representation” is a way
to “merge the incompatible local views of the data.”

• https://arxiv.org/pdf/2111.15506 (Towards a comprehensive visualization
of structure in data

– Data transformations as described in the paper: 1) Take non-linear
manifold in lower-dim where a visualization would be largely uninfor-
mative 2) then you take linear projections of the high-dim data and
make it human-readable (2 or 3-d)

– The problem is with non-linear methods which are computation-
ally complex and less deterministic (?). Examples of such methods
include t-SNE and UMAP.

– They address this with (standardized?) parametric configs? They
claim this would be generalizable to other non-linear methods.

– There’s commonly trade-offs with capturing global structure com-
pared to local structure. They propose a “retrieval information ap-
proach” where’s the neighbour retriever visualizer (NeRV) that looks
at the cost of precision relative to recall. They do this in terms of
retrieving/missing neighbors in the high-dim representation and the
low-dim representation.

– You’re also trading off speed compared to accuracy.

∗ I assume the premise is that chunking, discreteness, and
cleaner parameters translate into better queries compared to
more continuous data.

• https://www.pnas.org/doi/epdf/10.1073/pnas.95.25.14863)

• https://alarmingdevelopment.org/?p=1570

• https://www.tableau.com/sites/default/files/2023-01/2008-GraphicalHistories-
InfoVis.pdf Graphical Histories for Visualization: Supporting Analysis,
Communication, and Evaluation (2008)

• https://link.springer.com/article/10.1186/1471-2288-10-14 (Understand-
ing human functioning using graphical models)

9

10 Why a library of (tacit) knowledge is valu-
able for the model developer

It seems odd that you can’t get a snapshot of the entire state of your model as
time goes on.

For typed models, you have the equational representation and the diagrammatic
representation.

We want to assess the relationships between different variables and then manip-
ulate our graphs to help us best understand what those relationships are.

With Datawrapper you can link “live” datasets and it would be useful to see
how the graphs change in relaton to changes in the dataset.

This NYT project looked at changes in language use in different articles over
time. There are semantic tags for the words that appear the most frequently.

11 Kinds of Procedural Knowledge to Capture
• Making sense of the dataset (i.e. whether it is tabular, etc.) Modifying

the dataset based on the features that wll be abstracted (coming up with
columns, etc.).

• Establishing a relation to try and synthesize a graphical design. Making
sense of structural properties (with the domain sets) “and their functional
relationships.”

• Explaining why a data instance is anomalous. Explaining why an instance
was an anomalous and defining the anomaly itself.https://dl.acm.org/doi/10.1145/3609333
(this work mentions visual models for anamoly detection)

• the assumptions

• Choosing the features to focus on for the lower-dim representation of the
dataset.

• Assuming some pattern

• Trying to validate the pattern

• Iterating, debugging the visual representation

12 Benefits
• Explainability (understanding how the fnal visual came-to-be)

10

https://nytlabs.com/projects/chronicle.html
https://dl.acm.org/doi/pdf/10.1145/22949.22950?curius=2438
https://dl.acm.org/doi/pdf/10.1145/22949.22950?curius=2438

13 Analogies and Relevant Concepts
• Cognitive trails (temporal qualities, defining “memories” in the space of

your memory)

– There’s causal links, conditional branches and attentional focus.
There’s temporal sequences of thought. Showing the
different considerations and when they arise, the different
, and try to explicate many implicit processes.

– you reason about how “understanding of a domain manifests in an
agent’s behavior” (RL-related, behavioral psychology, markovian
game theory, etc.)

– “having understandable stories of reasoning”

– How do you convert understanding Newton’s laws of motion to cal-
culating a projectile (Claude-generated example)

– Tool selection (i.e. picking the right statistical theory based on un-
derstanding of probability theory (Claude-generated).

– condition-action

• What do CRDT logs look like?

– How do states relate over time?

– Can you reconstruct a reasoning process from CRDT logs?
∗ CRDTs don’t keep a full operational log. They only store the
current state. Logs (for auditing, provenance, replay) then you
can have operational logs manually made or through a layered
system.

· having a directed versus undirected graph

· JSON patches

· Track the intent and target of every change

· you can replay them in any order (but how does work when
decisions only make sense in certain/a given sequence(s))

· here is where branching timelines could fit in

· *ChatGPT says: “This preserves the integrity of insight while
still getting the power of distributed sync.”

· CRDTs are built to ensure convergence; but you can
add-on a “procedural layer” for the sake of inter-
pretablity.

– Synthesis (of visual environments)

11

https://core.ac.uk/download/pdf/29195125.pdf

• Coresets

– Partitioning datasets that upon reconstruction preserve all the prop-
erties of the full dataset.

– It’s partitioned to speed up computations, making approximations
faster (e.g. clustering, regression), and “compressing” procedural and
data-intensive pipelines.

– The structure is a weighted subset for a given objective function.

– With each small subset of data you have the key properties of the
transformed dataset . The coreset s “stored” with the step where it
was computed (linked list and indexing)

– The goal is to have a ‘’miniature, audit-ready trace

– Ordered, annotated log as a form of “narrative layer”

∗ You can have human + machine annotations versus. algorithmi-
cally derived narrative layers

• Record linkage

14 Case-studies

15 Version Control
Meaningful diffs when you’re working in different languages.

JS is both more imperative and un-typed. How do you retrieve the goals of
different states when you’re using these languages? This is compared to when
I use SQL and I have clear explications of my goals and then if I migrate and
there’s an error then I can infer that the next steps are bug-fixing.

12

	Introduction
	Status quo
	Overview
	How to read this work. Listing the organization of the paper.
	Structure and points
	Motivations & Real-World applications
	Data Visualization and Modelling as a test-bed
	Relevant Work
	Relevant
	Annotated Bib

	Why a library of (tacit) knowledge is valuable for the model developer
	Kinds of Procedural Knowledge to Capture
	Benefits
	Analogies and Relevant Concepts
	Case-studies
	Version Control

