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1 Introduction
Many valuable research artifacts are absent from modern libraries—not because
they lack importance, but because current systems struggle to accommodate
them. Designing a library is a forward-looking endeavor: it requires anticipating
how information will be interpreted, reused, and built upon in the future.

This work is part of a broader agenda: identifying knowledge worth preserving—
especially that which supports reuse and transparency—and rethinking how li-
braries must evolve to capture it. It builds on prior efforts advocating for the
preservation of reasoning and experimentation, not just final outcomes (Oder-
inwale, 2025).

Procedural Knowledge Libraries (PKLs) represent a concrete step toward this
vision. PKLs are structured, versioned representations of procedural knowledge.
They capture not only what was done but also how and why—organized into
modular units that can be queried and reused across domain-specific workflows.

Capturing a process—a sequence of intentional actions as they unfold—requires
real-time documentation that remains aligned with execution. Because steps
evolve, goals shift, and edits are made, the most faithful archives treat the
process as a dynamic artifact. Effective documentation, then, must go beyond
recording outcomes to include the rationale behind them.

To illustrate the distinction between process and procedure, and between infor-
mation and knowledge (Aamodt & Nygård, 1995), consider the contrast between
a lab protocol and a researcher’s notebook. A protocol describes fixed, validated
steps; the notebook captures informal observations, failed attempts, and evolv-
ing reasoning—the researcher’s working understanding of how to adapt those
steps. Put simply: a process is to a protocol as a procedure is to a notebook.

Similarly, a recipe lists ingredients and instructions, but a chef draws on pro-
cedural knowledge to adjust for taste, freshness, and timing under uncertain
conditions (Parkinson et al., 2012). Or compare a software tutorial with learn-
ing an experienced developer’s workflow through pair programming: the tutorial
offers a static path, while the workflow reveals how to navigate uncertainty, de-
bug creatively, and optimize using tacit heuristics (Gregory & Lindsay, 2016).

These omissions—of intent, trial-and-error, and tacit judgment—stymie collab-
oration, reproduce redundant effort, and obscure provenance. PKLs address
these gaps by enabling earlier-stage collaboration, structured reuse, and clearer
methodological accountability. The goal is to construct documentation that
captures procedural knowledge: how next steps were inferred, why paths were
abandoned, and what informed decisions beyond the trace—where traces refer
to recorded actions.
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2 Defining Procedural Knowledge Libraries
In considering the impact of PKLs, a question arises: what is documentation?
Especially within the context of Procedural Knowledge Libraries, it’s essential
to recognize that documentation serves multiple purposes. It can describe the
features of an object, provide instructions for its use, or detail its functions.
However, in the realm of procedural knowledge, documentation should aim to
capture not only the steps involved in a process but also the underlying reason-
ing, decision points, and adaptations made during its execution.

Procedural knowledge refers to an agent’s understanding of how to accomplish
specific tasks through structured actions. Unlike conceptual knowledge, which
concerns abstract principles and generalizable ideas (McCormick, 1997), proce-
dural knowledge consists of executable steps tied to concrete outcomes (Byrnes
& Wasik, 1991b). I distinguish between procedural information—raw sequences
of actions—and true procedural knowledge, which integrates both the steps
themselves and their contextual purpose in a domain.

Thus, a key characteristic of procedural knowledge is its goal-oriented organi-
zation. For instance, directions become meaningful procedural knowledge only
when connected to a destination. This contextual grounding enables domain-
specific problem solving while making the knowledge challenging to transfer—
procedures are often internalized through unique experience rather than ex-
plicit documentation. Capturing such knowledge would represent a significant
advance in preserving tacit expertise.

A complete understanding of procedural knowledge requires examining both
successful and failed processes. While metrics can evaluate a procedure’s effec-
tiveness, even unsuccessful attempts contain valuable insights for those who can
interpret them. This perspective informs our approach to procedural knowledge
libraries, where documenting the relationship between methods and outcomes–
including dead ends—building more than just repositories, but libraries that
can be used to construct maps of problem-solving instances.

Procedural knowledge forms the backbone of all goal-directed systems, yet cap-
turing and reusing it remains both challenging and often overlooked. The core
difficulty lies in developing encodings that preserve not only the steps executed
but also their contextual rationale—transforming raw execution traces into re-
producible, interpretable workflows with their underlying reasoning intact (El-
saka, 2017). While some processes follow clearly articulated hypotheses, others
may emerge from intuition or ad-hoc judgment. PKLs cannot directly capture
tacit knowledge, but the data they contain and the clarity they bring to a pro-
cess can make it easier to discern between intentional, iterative decisions and
outcomes shaped by intuition, serendipity, or accident.

This challenge is particularly important because, as psychological research
demonstrates, procedural learning is inherently more difficult than conceptual
learning (Byrnes & Wasik, 1991a). The implications are universal: whether

3



in scientific research, technical workflows, or organizational operations, the
ability to encode, retrieve, and compare procedural knowledge could unlock
new paradigms in how one documents, teaches, and builds upon processes.

To address this, I propose infrastructure that captures procedural knowledge in
its full context—the how and why behind methodological choices—transforming
isolated expertise into reusable, composable units.

3 Contributions
PKLs serve as containers for domain-specific expertise, designed for transfer and
reuse—not just as version control trees, but as semantically enriched structures
with context-aware annotations on each commit.

This paper makes three contributions: (1) it defines Procedural Knowledge
Libraries (PKLs) as a conceptual framework for capturing and reusing process-
level knowledge in computational workflows; (2) it introduces a lens-based ab-
straction for selective encoding and transformation of procedural units; and
(3) it proposes a practical system architecture for PKLs, including a prototype
storage schema, patch format, and a sketch of the querying system. PKLs
are presented as a conceptual schema, a working prototype, and a candidate
standard for representing procedural knowledge—each contribution reflecting a
different level of maturity in the framework’s development.

This paper targets practitioners, tool builders, and infrastructure designers seek-
ing to expand procedural documentation capabilities. It provides both concep-
tual foundations and a system sketch to inform future tooling and research.

3.1 Completeness & Reconstruction
Completeness in PKLs is relational, not absolute. A PKL artifact is considered
complete if a domain-qualified interpreter can reconstruct the procedure in a
way that aligns with its original intent. Failures in reconstruction may stem
from the artifact itself or from gaps in the interpreter’s contextual knowledge
(Cohen et al., 2024).

To clarify this, we define a qualified interpreter as one with access to domain
knowledge equivalent to that of the original author. For example, two inter-
preters executing the same plotting script with different datasets will produce
different outputs—not due to an incomplete procedure, but due to divergent
contexts.

Because interpreter knowledge is hard to measure directly, we compare the PKL
artifacts they generate. Discrepancies in outputs may reveal missing assump-
tions or dependencies. PKLs mitigate this by being referential by design—each
procedural step is linked to its semantic and temporal context, enabling debug-
ging of where understanding or fidelity breaks down.
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4 Relevant Work
Research on episodic memory (EM) offers insight into how experiences are stored
and retrieved in the brain. Zeng et al. show that one function of EM is using past
experiences to prepare for future events (Zeng et al., 2023), directly informing
our understanding of cognitive replay—an ability that PKLs aim to support.
This connects to the concept of episodic control (Blundell et al., 2016; Ciatto et
al., 2025), where discrete experiences can be retrieved and reused as structured,
standalone units.

In distributed systems, Kleppmann’s framework for event classification estab-
lishes valuable structural principles (Kleppmann, 2021). The analysis of event
ordering—distinguishing between partial and total order—along with an exam-
ination of time-boundedness and persistence characteristics, provides concrete
parameters for modeling procedural flows.

In ML, complementary approaches have been developed using Procedural
Knowledge Ontologies (PKOs). Carriero et al. (Carriero et al., 2025) demon-
strate how standardized representations make interoperability easier, extending
the Linked Terms Methodology for ontology development (Poveda-Villalón et
al., 2022). These efforts help create common formats for describing procedural
knowledge across different fields.

Further, work by Fan et al. outlines the use of ”chunked sub-routines” to supple-
ment an agent’s library of ”primitive concepts” in a process termed ”structured
library learning.” They find that such examples establish a foundation for more
efficient learning in novel systems—enabling agents to adapt to new environ-
ments more effectively by building on initial library of learned processes. Over
time, agents develop ”procedural abstractions,” referring to increasingly larger
fragments of steps, thereby making communication more efficient (McCarthy et
al., 2021).

Collections of codified processes have also been studied as a means to sup-
port compositional learning (Felice, 2022), as studied in representation learn-
ing, by decomposing workflows into modular, reusable units—allowing models
or agents to generalize across tasks by recombining known procedures in novel
ways (Chang et al., 2019).

Furthermore, ML model architectures PRISM (PRocedure Identification with
a Segmental Mixture Model) leverage hierarchial Bayesian reasoning to recover
procedural abstractions from time-series data in an unsupervised manner (Goel
& Brunskill, 2019). By contrast, this work emphasizes determinism and explain-
ability, prioritizing explicit encodings and reproducible transformations over
probabilistic inference.

4.0.1 PKLs for Post Hoc Planning

PKLs can be understood as a structured analogue to the reverse process of
dynamic plan synthesis (Abe et al., 2025; Acharya et al., 2024)—the real-time
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construction or adjustment of a plan in response to unfolding conditions. In
contrast, PKLs focus on generating post hoc representations of procedural logic
across a wider range of loosely specified situations. Where dynamic plan re-
construction seeks to infer intent and structure from observed agent behavior,
PKLs aim to capture the procedural logic behind complex human tasks.

Relatedly, “model diffing” is an interpretability technique where researchers
compare two versions of a model (e.g., a base model and a fine-tuned variant)
to identify meaningful differences in behavior or representation (Ameisen et al.,
2025; Shah et al., 2022). What sets interpretability through model diffing and
PKLs apart is the stage of model processing they target. Model diffing focuses
on changes in weights, features, and internal representations, whereas PKLs
operate at a higher level of abstraction, capturing human-readable procedural
structures like method, parameter, and design choices.

Despite these differences, the two probing methods are compliments of each
other. Model diffing reveals internal changes such as activation shifts or ar-
chitectural rewiring, while PKL-style diffs capture shifts in intent, strategy, or
framing. Both can support ‘interpretability,’ but their units of analysis differ:
numerical changes in internal representations versus compositional changes in
decision logic. While model diffing traces how a model evolves, PKLs clarify
how procedural knowledge develops—and how it can be reused, adapted, or
audited. Together, they offer a stronger foundation for model oversight.

5 PKL System Architecture
The core functions of the PKL can be broken down into three (encoding, storage,
and retrieval) and give exposition via case-studies and reflection on them.

5.1 Encoding
What makes a procedural representation meaningful? For PKLs, encoding refers
to transforming raw procedural traces—such as code cells or pipeline steps—into
structured representations that preserve context and support reusability. This
section defines what makes an encoding meaningful and how PKLs differentiate
between intent and outcome.

5.2 Definitions
• Lenses: Bidirectional transformations that isolate, extract, or reinterpret

(procedural) components “between a database and a view of it.” (Fong
& Johnson, 2019; Gottlob et al., 1986) In PKLs, lenses allow for chosen
views, representations, or rewrites of workflows while preserving semantic
consistency and enabling composition.

• Procedure: A versioned, structured representation of a process. In PKLs,
a procedure captures the steps, context, and rationale behind a task or
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workflow, including its evolution over time and potential for reuse or rein-
terpretation.

• Patches: In Git, a patch is the delta between two repository states—
typically the difference between two commits or working tree snapshots.
These are usually expressed as line-based text diffs showing which lines
were added (‘+’), removed (‘-’), or modified (Joshy & Le, 2020). While
commonly associated with version control, the concept generalizes to any
structured set of differences between states. A collection of patches repre-
sents the transformations needed to move a repository from one state to
another.

• Unit: The smallest traceable and meaningful element of a procedure. In
PKLs, a unit corresponds to an atomic step—such as a code cell, function
call, or task—that can be versioned, transformed, or composed within a
larger workflow.

• File: A named unit of data (often a collection of subunits) in a storage
system. In PKLs, a file represents a procedural element—such as code,
configuration, or output—that forms part of a reproducible workflow.

• Directory: A container that holds files and/or other directories in a
hierarchical structure (for organizational purposes). In PKLs, directories
organize procedural artifacts, collections of structured steps or shareable
workflows.

5.3 Granularity & Interoperability
Processes can exist in a number of environments, and ideally this framework
is generalizable. Therefore, for any given development environment, a PKL
system must first identify the procedural primitives, the smallest meaningful
units of work, such as cells in a notebook, functions in a script, or tasks in a
pipeline. Next, it is necessary to extract the execution context, including the
order of operations, dependencies, and any relevant environment configuration
required to interpret or reproduce the procedure. These procedural elements
must be captured in a structured way, such as JSON objects, abstract syntax
trees (ASTs), or a node in a dependency graph, making them standardized and
queryable.

Crucially, one must define patch semantics for the environment: that is, specify
how changes are represented and what constitutes a transformation, such as a
modified code cell, reordered steps, or updated parameters. Finally, the system
must implement lens mappings that associate user-defined transformations with
the underlying procedural structures, enabling selective extraction, abstraction,
or reinterpretation of the process according to task-specific goals.

Procedural Unit Granularity

What is the smallest traceable and meaningful unit of work in the environment?
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Table 1: Procedural unit examples across environments

Development Environment Procedural Unit
Jupyter Notebooks Code cell
Python Scripts Function or block
RStudio/RMarkdown Code chunk
Ib IDEs (e.g., Codespaces) File change or commit
Data Pipelines (e.g., Airflow, Luigi) Task or DAG node
Domain-specific (Modelling) Language Construct
Interactive Notebooks (e.g., Observable) Cell or reactive block

5.3.1 Application to Jupyter Workflows

Encoding a Jupyter notebook into a PKL requires identifying and transforming
its procedural elements into structured, queryable units. A notebook consists
of code cells, outputs, markdown cells, metadata, and execution order—each of
which contributes to the procedural context.

I define the encoding process as follows:

1. Cell Extraction: Parse the notebook’s JSON to extract code cells, mark-
down cells, and their metadata.

2. Execution Trace Capture: Record execution order (e.g., execution_count)
and timestamped outputs to reconstruct the temporal flow.

3. Dependency Analysis: Infer dependencies between cells using variable
usage and definition analysis (e.g., via AST parsing or tools like nbdime).

4. Lens Application: Apply lenses such as:

• Extraction Lens: Isolate all cells using a particular library (e.g.,
matplotlib) or performing a specific task (e.g., data loading).

• Abstraction Lens: Collapse multiple exploratory steps into a gen-
eralized data-cleaning block.

• Temporal Lens: Compare notebook state between two commits or
execution runs.

5. Patch Generation: Represent each edit (cell added, removed, modified)
as a diff in unified format, enriched with semantic tags (e.g., type: plotting,
intent: exploratory).

6. Semantic Indexing: Store the transformed cells and their relationships
in the metadata database, allowing retrieval by task, variable, or semantic
intent.

Example Lens Template for Notebook Cell Extraction:
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”TargetSchema”: ”cell-snippet-set”, ”PatchTemplate”: ”extractPattern”:
”.(read_csv | read_excel | read_parquet).”, ”cellType”: ”code”, ”matchField”:
”source” , ”InversePatchTemplate”: ”mergeStrategy”: ”append-to-top”,
”targetNotebook”: ”inferred”

5.4 Towards Meaningful Encodings
Encoding in a PKL refers to transforming raw procedural information—such as
code cells, function calls, or pipeline steps—into structured, reusable represen-
tations of procedural knowledge. This section outlines what makes an encoding
meaningful and how PKLs differentiate between intent and outcome.

5.5 Goals & Challenges
A central challenge in encoding procedural knowledge is distinguishing between
intent and execution. In many workflows—especially exploratory ones, such as
computational notebooks—goals often evolve and remain implicit (Rule et al.,
2018).

PKLs address this by treating the end state—such as a result, figure, or model
checkpoint—as the source of a linked procedural trace defined as a procedural
unit.

Each procedural unit (e.g., a notebook cell) may include annotations indicat-
ing its purpose or expected outcome (e.g., load data, train model, plot
results). These semantic tags, stored in the metadata database, allow us
to reconstruct the chain of reasoning and compare what was attempted with
what was achieved. For example, a failed training step and its correction
can both be stored, annotated with intent: model training and outcome:
failed convergence, enabling retrospective understanding.

Encoding the goal explicitly can involve metadata fields like TargetMetric,
ExpectedOutput, or DesiredState, while the final artifacts—plots, metrics,
exports—can be automatically captured and indexed. This setup supports
querying not only by actions taken, but also by the original intention behind
them.

5.6 Semantic & Temporal Structuring
To support meaningful encoding, our PKL system integrates semantic tagging
and temporal reasoning through structured metadata. A classification engine
parses each unit—such as a Jupyter cell, Python function, or DAG node—
using (Python’s) abstract syntax trees (ASTs), import resolution, and pattern
matching. It labels each unit with semantic tags (e.g., data loading, model
training), stored as JSON-LD (JSON-LD - JSON for Linked Data — Json-
Ld.org).
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5.6.1 Jupyter Semantic Classification Engine

Luckily, for Jupyter notebooks there is a common language across notebooks—
Python. Furthermore, all libraries are imported from a shared library of “mod-
ules.” Thus, one can programmatically extract the primitive functions and cre-
ate a repository of functions to parse from a notebook. Each method can be
considered an “operation” as a heuristic for a “step” or “unit” in a PKL.

The following is a code snippet intended to extract all import statements from
a .ipynb file and the function definitions for each.

import nbformat import re

# Load the notebook with open(”notebook.ipynb”) as f: nb = nbformat.read(f,
as_version=4)

imports = set() functions = set()

# Regex patterns for imports and function defs import_pattern =
re.compile(r’^(import|from)+[^]+‘) def_pattern = re.compile(r’^def++$(’)

for cell in nb.cells: if cell.cell_type == ”code”: for line in cell.source.splitlines():
if import_pattern.match(line): imports.add(line.strip()) if def_pattern.match(line):
functions.add(line.strip())

print(”Imports found:”) for imp in sorted(imports): print(imp)

print(”definitions found:”) for func in sorted(functions): print(func)

Next, module-level abstract syntax trees (ASTs), provided for all Python mod-
ules, and accessible through the ast Python module can then be used to produce
more granular, expressive annotations for a PKL unit (Arts, 2022). The process
consists of parsing Python code in ordered, strcutured fashion producing one
hierarchical AST for a whole notebook. ASTs for .ipynb are not inherently cell-
order aware. Therefore, the metadata that makes up PKL provenance serves as
enrichment to ASTs for procedure extraction.

6 Order & Time
In a notebook, there’s different layers of temporality that is valuable to track.
First, there’s cell-execution order. In a notebook, the order of the cells when
editing does not matter. However, someone running a notebook, must execute
cells in the appropriate order for it to run correctly. Execution order is al-
ready captured in .ipynb file metadata with the execution_count field which
records the order that cells were run in a kernel session. The execution order is
represented as an ordered list.

In PKLs, cell order alone is too coarse-grained, as each cell may contain multiple
distinct operations or steps. To address this, the PKL database uses a nested
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structure, embedding finer-grained PKL units within each notebook cell. Pro-
cedural order is tracked using Lamport timestamps—logical clocks that capture
causal relationships across operations (Lamport, 1978). Each unit is assigned a
Lamport value, which is updated with edits, reordering, or forks.

The Lamport timestamp algorithm can be shown as follows:

# Initialization time = 0

# On local event or before sending a message time = time + 1 send(message,
time)

# On receiving a message (message, timestamp) = receive() time = max(time,
timestamp) + 1

By combining semantic tags with logical timestamps, workflows gain both mean-
ing and a clear sense of order. Logical clocks, such as Lamport timestamps, help
track the sequence of events and their causal relationships. Semantic tags add
context and make it easier to interpret and organize actions. Together, they
allow systems to rebuild the history of a process, handle overlapping edits, and
reuse past work in new settings. This makes workflows more reliable, easier to
review, and better suited for collaboration.

6.1 Lenses as Procedural Abstractions
We propose a patch-based encoding approach in which lenses—bidirectional
transformations—is the means for isolating and modifying procedural elements.

Lens Types:

1. Extraction Lenses: Isolate specific elements (e.g., hyperparameters)

2. Abstraction Lenses: Summarize or simplify detailed procedures

3. Transformation Lenses: Convert formats or representations

4. Temporal Lenses: Compare or filter by time/version

Each lens is implemented as a parameterized patch template, enabling pro-
grammable views that preserve reversibility.

”LensID”: ”hyperparameter-focus”, ”Description”: ”Isolates model hy-
perparameters from full procedure”, ”SourceSchema”: ”ml-training-
procedure”, ”TargetSchema”: ”hyperparameter-set”, ”PatchTemplate”: ”con-
textLines”: 0, ”pathPattern”: ”**/model_config.json,yaml”, ”extractPattern”:
”$\.training.hyperparameters.*” ” , ”InversePatchTemplate”: ”mergeStrat-
egy”: ”deep-merge”, ”targetPath”: ”$\.training.hyperparameters.*”

Lens Composition:

To support complex operations, lenses can be composed sequentially. Composi-
tion is valid when the output schema of one lens matches the input schema of
the next.
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def can_compose(lens1, lens2): return lens1.targetSchema.isCompatibleWith(lens2.sourceSchema)

def compose_lenses(lens1, lens2): if not can_compose(lens1, lens2): raise
IncompatibleLensError() return Lens( sourceSchema=lens1.sourceSchema, tar-
getSchema=lens2.targetSchema, transform=lambda x: lens2.transform(lens1.transform(x)),
inverse=lambda y: lens1.inverse(lens2.inverse(y)) )

This modular encoding system allows for scalable transformation and precise
interpretation of procedural traces.

6.2 Storage
Once encoded, procedural knowledge must be persistently stored in a form that
is accessible, queryable, and robust to evolution over time.

6.2.1 File Format and Storage Considerations

I leverage established version control concepts and formats:

• Base Format: JSON or YAML for structured data, with additional for-
mats for domain-specific data

• Patch Format: Standard unified diff format (compatible with git, diff,
patch utilities)

• Directory Structure:

procedures/ ��� procedure-id/ � ��� base/ � � ��� files representing base pro-
cedure � ��� versions/ � � ��� v1/ � � ��� v2/ � � ��� ... � ��� views/ � ��� lens-id-
params-hash/ � ��� ... ��� ...

6.2.2 Storage Proposal

I propose an architecture based on:

1. Git-Compatible Storage: Leveraging mature version control for proce-
dure history

2. Patch Files: Standard unified diff format for representing transforma-
tions

3. Metadata Database: Lightweight index for lens information and rela-
tionships

Database Schema
��� Procedures � ��� ProcedureID (PK) � ��� BasePath � ��� Description �
��� Tags � ��� CreatedAt ��� Lenses � ��� LensID (PK) � ��� Type (Extrac-
tion|Abstraction|Transformation|Temporal) � ��� SourceSchema � ��� Tar-
getSchema � ��� PatchTemplate � ��� InversePatchTemplate ��� Views � ��� ViewID
(PK) � ��� ProcedureID (FK) � ��� LensID (FK) � ��� Parameters � ��� Path � ���
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CreatedAt ��� Compositions ��� CompositionID (PK) ��� Name ��� LensSequence
[LensID] ��� ValidationRules

This schema provides a lightweight index on top of a filesystem-based storage
system.

6.2.3 Key Features

• Filesystem-Based Storage: Procedures and their versions are stored
as files and directories, making them compatible with existing tools

• Standard Patch Format: Changes are represented using the unified diff
format, making them human-readable and compatible with existing patch
tools

• Metadata Database: A database that indexes procedures, lenses, and
views for efficient querying

• Composition Rules: Explicit rules for lens composition ensure transfor-
mations maintain integrity

6.3 Retrieval
The retrieval layer enables users to locate, interpret, and reuse procedural knowl-
edge.

6.3.1 Query Language

# Find procedures by tag FIND PROCEDURES WHERE tags CONTAINS
”image-classification”

# View a procedure through a lens VIEW procedure-19 THROUGH
lens:high_level_summary

# Apply a sequence of lenses VIEW procedure-19 THROUGH lens:extract_hyperparams
THEN lens:visualize_as_table

# Compare versions DIFF procedure-7:v1 AGAINST procedure-7:v3

# Extract specific steps FROM procedure-42 GET STEPS 3 TO 5

6.3.2 Implementing Retrieval

The retrieval system is implemented as:

1. Command-Line Interface: Git-like CLI for managing procedures

2. API Layer: RESTful and GraphQL APIs for programmatic access

3. Ib Interface: Visual exploration of procedures, versions, and transforma-
tions
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Example CLI commands:

# Create a new procedure from existing files pkl create-procedure—name
”image-classification”–base-path ./training_code/

# Apply a lens to create a view pkl apply-lens hyperparameter-focus–to
procedure-42

# Compare two versions pkl diff procedure-7:v1 procedure-7:v3

# Export a view to a specific format pkl export procedure-19 –lens
high_level_summary–format markdown

6.4 Practical Implementation
6.4.1 File Formats

1. Procedure Base: JSON, YAML, Markdown, code files in native formats

2. Patches: Standard unified diff format

3. Lens Definitions: JSON schema

4. Metadata: SQLite or a fitting alternative

6.4.2 Operation Flow

-1.5cm-1.5cm

PKL Operation Flow Diagram

6.4.3 Example Implementation

# Creating a procedure def create_procedure(name, base_path, tags=None):
# Generate a unique ID procedure_id = generate_id()

# Create directory structure os.makedirs(f”procedures/procedure_id/base”)
os.makedirs(f”procedures/procedure_id/versions”) os.makedirs(f”procedures/procedure_id/views”)

# Copy base files for file in glob.glob(f”base_path/**/*”, recursive=True):
if os.path.isfile(file): rel_path = os.path.relpath(file, base_path) target_path =
f”procedures/procedure_id/base/rel_path” os.makedirs(os.path.dirname(target_path),
exist_ok=True) shutil.copy2(file, target_path)

# Add to index db.execute( ”INSERT INTO Procedures (ProcedureID, Name,
BasePath, Tags, CreatedAt) VALUES (?, ?, ?, ?, ?)”, (procedure_id, name,
f”procedures/procedure_id/base”, json.dumps(tags or []), datetime.now()) )

return procedure_id

# Applying a lens def apply_lens(procedure_id, lens_id, parameters=None):
# Get procedure and lens info procedure = db.query(”SELECT * FROM
Procedures WHERE ProcedureID = ?”, (procedure_id,)).fetchone()
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lens = db.query(”SELECT * FROM Lenses WHERE LensID = ?”,
(lens_id,)).fetchone()

# Generate a view ID param_hash = hashlib.md5(json.dumps(parameters
or ).encode()).hexdigest() view_id = f”procedure_id-lens_id-param_hash”
view_path = f”procedures/procedure_id/views/lens_id-param_hash”

# Create view directory os.makedirs(view_path, exist_ok=True)

# Apply lens template to generate patch patch = generate_patch_from_template(
procedure[”BasePath”], json.loads(lens[”PatchTemplate”]), parameters )

# Apply patch to create view apply_patch(patch, procedure[”BasePath”],
view_path)

# Add to index db.execute( ”INSERT INTO Views (ViewID, ProcedureID,
LensID, Parameters, Path, CreatedAt) VALUES (?, ?, ?, ?, ?, ?)”, (view_id, pro-
cedure_id, lens_id, json.dumps(parameters or ), view_path, datetime.now()) )

return view_id

This implementation provides a concrete and practical approach to building a
Procedural Knowledge Library system that preserves the essential capabilities
for encoding, storing, and retrieving procedural knowledge.

6.5 Search & Navigation
Search is one of the most important features of a Procedural Knowledge Li-
brary. It allows users to find and reuse past work without having to manually
dig through files or notebooks. Whether someone is looking for a specific step in
a project, a general method for solving a problem, or a comparison between dif-
ferent approaches, the search layer makes it possible to retrieve that information
quickly and clearly.

Under the hood, search is powered by a structured metadata system. Each piece
of a procedure—such as a code cell, function, or data-processing step—is stored
as a unit with attached information: what it does, where it came from, when it
was created, and how it fits into the larger process. This information is stored
in a lightweight SQL database, which support fast indexing and querying.

The core database tables are presented as follows:

– Table of procedures CREATE TABLE Procedures ( ProcedureID TEXT PRI-
MARY KEY, Name TEXT, CreatedAt TIMESTAMP );

– Units of procedural work (e.g., cells, functions) CREATE TABLE Units (
UnitID TEXT PRIMARY KEY, ProcedureID TEXT, Content TEXT, Start-
Line INT, EndLine INT, SemanticTag TEXT, – e.g., ”data loading”, ”plot-
ting” LamportClock INT, FOREIGN KEY (ProcedureID) REFERENCES Pro-
cedures(ProcedureID) );
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– Views created through lens application CREATE TABLE Views ( ViewID
TEXT PRIMARY KEY, ProcedureID TEXT, LensID TEXT, Parameters
TEXT, Path TEXT, CreatedAt TIMESTAMP );

Using this database, a range of queries become possible. Here are a few exam-
ples:

• Search for procedures by task: FIND procedures WHERE tag="data
cleaning"

• Retrieve steps with a specific role: GET all units WHERE role="visualization"

• View a procedure through a different lens: VIEW procedure-12 THROUGH
lens:abstraction

• Compare versions over time: DIFF procedure-19:v1 AGAINST v3

6.5.1 Search Capabilities

Search in PKLs is designed not just for finding information, but for helping
people understand, reuse, and build on prior work more effectively.

Each query can return a filtered version of the procedure, a summary of what
each part is doing, or a list of changes between two versions. This helps users
understand not just what was done, but how it was done and why certain steps
were taken.

To make this easy to use, the system would support both a command-line inter-
face (CLI) and a visual interface. The visual interface allows users to explore
procedures as trees or timelines and apply lenses interactively. There’s also
support for fuzzy search, so users can type natural language queries like “load
CSV and plot scripts” and get relevant results.

6.5.2 Debugging Example

Consider a researcher maintaining a model that suddenly performs worse on a
key benchmark after recent changes. With a Procedural Knowledge Library,
the researcher can query the last known “good” version and compare it to the
current version using a temporal lens:

DIFF procedure-17:v4 AGAINST procedure-17:v7

This returns not just a code-level diff, but a semantic view showing that a
hyperparameter tuning step was removed, and a data augmentation function
was modified. Because each change is tagged with its role (e.g., training config,
data preprocessing), the system surfaces meaningful differences rather than low-
level line edits.

The researcher can then replay the procedural path leading to version 4, verify
intermediate results, and selectively roll back or adjust specific units. This
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enables faster root-cause analysis and avoids re-running full experiments from
scratch—saving both time and compute.

7 Existing Systems & Their Limitations
7.1 Experimental Reproducibility
Reproducing machine learning results often means guessing how experiments
were actually run. Initiatives like the NeurIPS Reproducibility Challenge show
the desire for transparency and explainability of the research process. The
difficulties faced by the 6-year initiative also show whynumerical outputs and
shared code are rarely enough (Pineau et al., 2020). Tools such as MLflow and
the Sacred track parameters, but do not fully capture the steps the researchers
took or why (Chen et al., 2020; Greff et al., 2017). Procedural Knowledge
Libraries (PKLs) aim to fill this gap by recording not just outputs but also the
decisions that led to them.

7.2 Case Study: Procedural Archaeology in the o1 Model
Family

The OpenAI o1 model family illustrates the need for better process-level
documentation. While OpenAI shared results suggesting that inference-time
compute—rather than training scale—drove performance gains, no code or
method was released to replicate their scaling law graphs (OpenAI et al., 2024).

In response, external researchers reverse-engineered the evaluation pipeline us-
ing the o1-mini API (Zhang & Chen, 2024). They simulated computation time
via prompt design, inferred token counts from billing, and approximated major-
ity vote logic. Yet their reproduction diverged from OpenAI’s results at high
compute levels, raising questions about hidden evaluation steps, architectural
changes, or prompt tuning.

This reconstruction effort—essentially procedural archaeology—highlights why
PKLs matter. Even with visible outputs, the absence of procedural detail leads
to ambiguity and loss of scientific rigor. PKLs are positioned to fill this gap by
recording not just outputs but also the decisions that led to them.

8 Evaluating PKLs
The evaluation of a Procedural Knowledge Library system must extend beyond
theoretical assessments to include practical implementation concerns. I pro-
pose a multidimensional evaluation framework that addresses both the system’s
theoretical foundations and its utility in real-world research environments.

Another important dimension for evaluating PKL systems is the overhead they
introduce to existing workflows. PKLs add computational cost through con-
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tinuous tracking, versioning, and indexing of procedural traces. Without op-
timization, storage requirements scale with 𝑂(𝑛 log 𝑣), where 𝑛 is the size of
procedural artifacts and 𝑣 is the number of tracked versions. This is more effi-
cient than naive approaches that store full copies of each version (𝑂(𝑛𝑣)), but
increases retrieval overhead, as procedures must be reconstructed from base ver-
sions and patch sequences. More broadly, the abstraction layers introduced
by PKLs contribute to complexity in three areas: encoding overhead during
capture, storage overhead for managing metadata, and retrieval overhead when
rendering or transforming procedures.

9 File Formats & Interoperability
The choice of file formats dramatically impacts a PKL’s interoperability with
existing tools and workflows. Ideally, a PKL should leverage established for-
mats where possible, introducing custom extensions only when necessary for
representing procedural metadata.

Our implementation utilizes a layered approach to file formats:

• Base Layer: Native formats for domain-specific artifacts (e.g., Python files,
notebooks, configuration files)

• Differential Layer: Standard unified diff format for tracking changes

• Lens Layer: JSON Schema-based lens definitions for transformations

• Index Layer: Lightweight database schema for efficient queries

This approach minimizes the ”format tax” imposed on users while enabling
the essential features of procedural knowledge management. Integration with
existing version control systems like Git allows PKLs to leverage mature in-
frastructure while extending it with procedural semantics. By implementing
PKL operations as extension commands to Git, researchers can continue using
familiar workflows while gaining access to procedural knowledge capabilities.

10 Integration into Existing Systems
For PKLs to achieve adoption, they must integrate seamlessly with existing
research environments. I outline three paths to do so:

Computational notebooks represent a natural starting point, as they already
combine code, documentation, and results in a semi-structured format. Our
prototype integrates with Jupyter through a custom extension that automat-
ically captures execution traces and enables lens-based views. This approach
requires minimal changes to existing workflows.

Integration with development environments presents additional challenges due
to their focus on textual manipulation rather than execution traces. Our imple-
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mentation addresses this through a combination of language server extensions
and procedure inferencing techniques that reconstruct procedural knowledge
from code repositories and execution logs.

Scientific workflows systems (e.g., Apache Airflow, Luigi) offer more structured
representations of procedures but typically lack the semantic richness needed for
knowledge transfer. By extending these systems with lens-based views and se-
mantic annotations, PKLs can preserve both execution details and the reasoning
behind workflow design decisions.

11 Discussion
11.1 Considerations for Adoption
The complexity of any new system introduces a learning curve that can impede
adoption. For PKLs, this presents as three distinct challenges: (1) Conceptual
overhead: Understanding the lens-based manipulation model (2) Technical over-
head: Learning new commands and interfaces (3) Process overhead: Adapting
existing workflows to support procedural knowledge capture

The learning investment is non-trivial but justified by longitudinal benefits, par-
ticularly for collaborative teams or research programs spanning multiple years.

Adopting a Domain-Specific Language (DSL) for procedural knowledge presents
additional trade-offs. While a DSL enables precise expression of procedural se-
mantics, it introduces a steeper learning curve. Our evaluation suggests that
DSL complexity should be minimized for initial adoption, with more sophisti-
cated features introduced progressively as users become familiar with the sys-
tem.

11.1.1 Long-term Viability and Preservation

The value of procedural knowledge increases over time, making preservation a
critical concern. PKLs must be evaluated not just for their immediate utility but
for their longevity in the face of changing technologies and research practices.

Our approach to preservation includes: format migration strategies that can
adapt as file formats evolve, emulation capabilities that preserve execution en-
vironments, semantic annotations that capture intent independent of specific
implementations, and dependency management that tracks external resources
and their versions.

Thus, PKLs help conserve procedural knowledge so it stays useful—even as
tools, formats, and technologies change over time.
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12 Future Work
A natural direction for future work is to generalize the foundation of Procedural
Knowledge Libraries to support a wider range of development environments.
Developers frequently move between tools and interfaces—from notebooks and
scripts to CI pipelines, configuration files, and visual editors. This raises an open
problem: how can PKL artifacts be composed across diverse systems while still
enabling procedural capture?

To address this, future PKL systems must support contributions from different
tools and environments, and encode transformations that span across modali-
ties and domains. This requires representations that can unify procedures orig-
inating from distinct formats and workflows while maintaining structure and
interpretability. One promising path lies in research on lenses and bidirectional
transformations. Foster et al. explore a relevant framework in their work on
“Combinators for Bi-Directional Tree Transformations,” which addresses the
View Update problem in structured data contexts (Foster et al., 2007). Extend-
ing such approaches to PKLs may provide a foundation for composing, diffing,
and synchronizing procedural artifacts across tools in a way that remains both
interpretable and reversible.

Another avenue for future work involves systematically extracting procedural
knowledge—or implicit documentation—from existing outputs such as note-
books, code repositories, logs, and reports. These artifacts often contain rich
procedural information that, if harnessed effectively, can enhance transparency
and reproducibility. Techniques from information extraction (IE) and natural
language processing (NLP) have shown promise in structuring such content. For
instance, Agarwal et al. propose methods to extract procedural knowledge from
technical documents using structural and linguistic patterns (Agarwal et al.,
2020).

Schemas for extracted procedural data can help ensure consistency in PKL ar-
tifacts and help automate the process (DistillerSR, 2024). Integrating these ap-
proaches could automate PKL artifact generation from legacy materials. Align-
ing extraction with standardized metadata schemas (Akhtar et al., 2024).

Looking ahead, several directions could extend the utility of Procedural
Knowledge Libraries (PKLs). One avenue is their integration with machine
learning agents (AlphaEvolve), where PKLs could serve as long-term procedural
memory—supporting grounded, revisable, multi-step behavior and enabling
agents to reflect, adapt, or reuse prior workflows.

Another line of work involves enhancing PKLs with temporal semantics. Em-
bedding structured representations of time—such as causal ordering or change
intervals—could support time-aware queries, comparisons over workflow evolu-
tion, and replay of development histories. For example, this may include captur-
ing when specific steps were added, modified, or deprecated (e.g., timestamped
edits, version intervals, or dependency-aware sequences), enabling users to trace
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how workflows evolve, identify when key decisions were made, and reason about
changes over time.

13 Next Steps
In the context of Jupyter notebooks, PKLs offer a path toward semantically-
aware versioning. Traditional line-based diffs are ill-suited to notebooks, which
blend code, outputs, markdown, and execution metadata. PKLs can represent
these elements as traceable units, supporting structured diffs, procedural patch-
ing, and more verifiable forms of citation. Future work includes developing
extensions that reconstruct execution graphs from non-linear cell runs (Prenner
& Robbes, 2025), improving provenance tracking and reproducibility.

Additional work is needed to explore access control and privacy-preserving mech-
anisms for procedural traces—particularly when they contain sensitive informa-
tion such as API keys, credentials, or unpublished results. Techniques from
differential privacy and secure provenance tracking could be adapted to this
setting.

Finally, future efforts should assess the usability of different procedural represen-
tations. Comparative studies could examine how formats like notebooks, scripts,
or structured workflows affect the ability of users—or models—to understand,
modify, or transfer procedures. This research would inform design decisions
for PKLs, ensuring they remain not only expressive but learnable and reusable
across contexts.

14 Conclusion
By capturing both the steps and context of research processes, PKLs allow for
more efficient, collaborative, and reproducible science. The architecture I have
proposed—based on lens transformations, patch-based storage, and semantic
retrieval—provides a practical blueprint for implementing PKLs across diverse
research domains. As computational methods continue to dominate scientific
discovery, the ability to effectively manage procedural knowledge will become
increasingly central to research progress, turning tacit knowledge into explicit,
shareable resources that improve how science is done and disseminated.
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